Glial cell inhibition of neurons by release of ATP.
نویسنده
چکیده
ATP is released by neurons and functions as a neurotransmitter and modulator in the CNS. Here I show that ATP released from glial cells can also serve as a potent neuromodulator, inhibiting neurons in the retina of the rat. Activation of glial cells by focal ejection of ATP, ATPgammaS, dopamine, thrombin, or lysophosphatidic acid or by mechanical stimulation evoked hyperpolarizing responses and outward currents in a subset of retinal ganglion cells by increasing a Ba(2+)-sensitive K(+) conductance in the neurons. This glia-evoked inhibition reduced the firing rate of those neurons that displayed spontaneous spike activity. The inhibition was abolished by the A(1) adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) (10 nm) and was reduced by the ecto-ATPase inhibitor ARL-67156 (6-N,N-diethyl-D-beta,gamma-dibromomethyleneATP) (50 microm) and by the ectonucleotidase inhibitor AOPCP [adenosine-5'-O-(alpha,beta-methylene)-diphosphonate] (250 microm). Selective activation of retinal glial cells demonstrated that Müller cells, but not astrocytes, mediate the inhibition. ATP release from Müller cells into the inner plexiform layer of the retina was shown using the luciferin-luciferase chemiluminescence assay. These findings demonstrate that activated glial cells can inhibit neurons in the retina by the release of ATP, which is converted to adenosine by ectoenzymes and subsequently activates neuronal adenosine receptors. The results lend support to the hypothesis that glial cells play an active role in information processing in the CNS.
منابع مشابه
Effects of spironolactone and fludrocortisone on neuronal and glial toxicity induced by N-methyl-D-Aspartate and chloroquine in cell culture
Spironolactone has produced beneficial effects in animal models of neurodegenerative disorders. However, the underlying mechanisms of this agent on neurons and glia are mostly unknown. Therefore, we aimed to show the effects of spironolactone and fludrocortisone, a mineralocorticosteroid receptor agonist, on neuronal and glial toxicity induced by N-methyl-D-aspartate (NMDA) activation and chlor...
متن کاملThe Effects of Progesterone on Glial Cell Line-derived Neurotrophic Factor Secretion from C6 Glioma Cells
Objective(s)Progesterone is a steroid hormone whose biology has been greatly studied within the confines of reproductive function. In recent years, the neuroprotective effects of progesterone have attracted growing interest. Glial cell line-derived neurotrophic factor (GDNF), is a neurotrophic factor which plays a crucial role in the development and maintenance of distinct sets of central and p...
متن کاملExocytosis of ATP From Astrocytes Modulates Phasic and Tonic Inhibition in the Neocortex
Communication between neuronal and glial cells is important for many brain functions. Astrocytes can modulate synaptic strength via Ca(2+)-stimulated release of various gliotransmitters, including glutamate and ATP. A physiological role of ATP release from astrocytes was suggested by its contribution to glial Ca(2+)-waves and purinergic modulation of neuronal activity and sleep homeostasis. The...
متن کاملRestraint stress increases hemichannel activity in hippocampal glial cells and neurons
Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-infla...
متن کاملNeuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia.
It has been generally assumed that the cell body (soma) of a neuron, which contains the nucleus, is mainly responsible for synthesis of macromolecules and has a limited role in cell-to-cell communication. Using sniffer patch recordings, we show here that electrical stimulation of dorsal root ganglion (DRG) neurons elicits robust vesicular ATP release from their somata. The rate of release event...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2003